

Unit Outline (Higher Education)

Institute / School:	Institute of Innovation, Science & Sustainability
Unit Title:	THERMODYNAMICS
Unit ID:	ENGIN3304
Credit Points:	15.00
Prerequisite(s):	(ENGIN2304 for undergraduate Students only)
Co-requisite(s):	Nil
Exclusion(s):	Nil
ASCED:	030701

Description of the Unit:

The unit will consolidate and further extend the principles of thermodynamics and apply them to a range of engineering and industrial applications and provide the underlying fluid mechanic concepts involved in fluid flow to enable students to analyse more complex applied phenomena.

Grade Scheme: Graded (HD, D, C, P, MF, F, XF)

Work Experience:

No work experience: Student is not undertaking work experience in industry.

Placement Component: No

Supplementary Assessment: Yes

Where supplementary assessment is available a student must have failed overall in the Unit but gained a final mark of 45 per cent or above, has completed all major assessment tasks (including all sub-components where a task has multiple parts) as specified in the Unit Description and is not eligible for any other form of supplementary assessment

Course Level:

Level of Unit in Course	AQF Level of Course						
	5	6	7	8	9	10	
Introductory							
Intermediate							

Level of Unit in Course	AQF Level of Course						
	5	6	7	8	9	10	
Advanced			~				

Learning Outcomes:

Knowledge:

- K1. Identify the basic laws of thermodynamics and their utility in thermal engineering
- **K2.** Demonstrate the principles of engineering analysis as applicable to thermodynamics.
- **K3.** Analyse thermodynamic problems relevant to industrial applications.

Skills:

- **S1.** Apply the knowledge gained in a controlled laboratory environment.
- **S2.** Apply existing and developing knowledge and experience.
- **S3.** Develop and analyse thermodynamic methodologies.

Application of knowledge and skills:

- **A1.** Apply knowledge gained in thermodynamics in controlled laboratory environment.
- **A2.** Apply the developed thermodynamic knowledge to solve realistic problems.

Unit Content:

Topics may include:

- Thermodynamic cycles
 - Generalised representation of thermodynamic cycles; Cycle efficiency.
 - The most efficient thermodynamic cycle: the Carnot cycle.
 - Statements of the Second Law of thermodynamics.
 - The Carnot Principles
- Entropy
 - Entropy and the T-S diagram.
 - Isentropic processes, isentropic efficiencies of steady-flow devices.
 - Entropy and reversibility.
- Reciprocating internal combustion engines
 - Otto cycle: the ideal cycle for spark ignition engines
 - Diesel cycles: The ideal cycle for compression-ignition engines
 - Differences between ideal and practical engine cycles
 - Four-stroke and two-stroke engines
 - Engine performance calculations.
- Gas-turbine engines
 - Brayton cycle: the ideal cycle for gas-turbine engines
 - Deviation of actual gas-turbine cycles from idealised ones
 - Enhancing Brayton cycle with regeneration, inter-cooling and reheating
 - Theory of mixtures, psychrometry and combustion
 - Jet-propulsion cycles

Learning Task and Assessment:

Learning Outcomes Assessed	Assessment Tasks	Assessment Type	Weighting
K1-K3, S2-S3, A2	Numerical problems to help students learn problem solving skills.	Numerical assignment	10-20%
S3, A1	Practical application of the basic thermodynamic principles in a laboratory setting.	Lab reports	10-20%
K1-K3, S2-S3, A2	Numerical problems and real engineering scenarios to assess student's understanding of application of the basic laws of thermodynamics	Quiz/Tests/Final Exam	10-50%

Alignment to the Minimum Co-Operative Standards (MiCS)

The Minimum Co-Operative Standards (MiCS) are an integral part of the Co-Operative University Model. Seven criteria inform the MiCS alignment at a Course level. Although Units must undertake MiCS mapping, there is NO expectation that Units will meet all seven criteria. The criteria are as follows:

- 1. Co-design with industry and students
- 2. Co-develop with industry and students
- 3. Co-deliver with industry
- 4. FedTASK alignment
- 5. Workplace learning and career preparation
- 6. Authentic assessment
- 7. Industry-link/Industry facing experience

MiCS Course level reporting highlights how each Course embraces the principles and practices associated with the Co-Operative Model. Evidence of Course alignment with the MiCS, can be captured in the Course Modification Form.

No

MICS Mapping has been undertaken for this Unit

Date:

Adopted Reference Style:

Other (IEEE: Refer to the library website for more information)

Refer to the library website for more information

Fed Cite - referencing tool